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Electrohydrodynamic instability is described in a planar region of gas, with unipolar 
injection through a linear temperature gradient, with corresponding mobility, 
viscosity, and density gradients. The role of charge-relaxation instability, which is 
incipient a t  a critical value of electric Rayleigh number in a uniform mobility layer, 
is distinguished from the mobility-gradient-driven mechanism, which can produce 
instability at much smaller voltage thresholds. Relative values of electroviscous time, 
viscous diffusion time and ion transit time determine the nature of the instability 
process. The instability is stationary or dynamic for wavenumbers respectively below 
or above a critical value. The fastest-growing wavenumber and corresponding growth 
rate are determined as functions of time constants and temperature gradient. 

1. Introduction 
The ability of an ion flux from a high-voltage electrical discharge to  augment heat 

transfer from a heated object in a gas has been recognized a t  least as far back as a 
1933 U.S. patent for cooling of the exterior casing of stepdown transformers (Palueff 
1933). Since then, a variety of applications have involved the same fundamental 
mechanism - augmentation of heat transfer in a gas, usually air, by means of an ion 
flux, typically from a coronn-discharge electrode (Sadek 1969; McDermott 197 1 ; 
Lindsley 1973; Kibler 1974; Kibler & Carter 1974; Kulacki & Daumenmier 1978). 

Understanding of the nature of the interactions involved in such processes is 
somewhat clouded by the simultaneous involvement of more than one physical 
mechanism. The most obvious and often cited effect is that associated with the so-called 
‘corona wind ’, wherein collisions between field-driven ions and neutral air molecules 
result in a net drift of the medium within which the current flux is imposed (Chattock 
1899; Robinson 1961). Thus, the electrical discharge has an effect somewhat similar 
to that of a conventional fan in driving air motion in regions adjacent to the heated 
surface. (The large difference between ion and ambient gas speeds points to the 
relative inefficiency of this process - a fan is a much more effective means of causing 
bulk gas motions.) 

A less obvious mechanism, which motivates the model described here, derives from 
the dependence of electrical mobility on temperature. Adjacent to a heated surface, 
a gradient in temperature implicitly involves a gradient in electrical mobility. The 
resultant electric field variation and its associated space-charge accumulation drive 
a bulk-coupled electrohydrodynamic instability, with attendant mixing processes 
similar to those driven by conductivity gradients in ohmic liquids (Hoburg & Melcher 
1976,1977 ; Hoburg 1978). The efficiency of the mobility-gradient-driven mechanism 
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FIQURE 1 .  One-dimensional model. A unipolar ion flux is injected into a planar layer with 
vertically varying equilibrium mobility, viscosity and mass density. 

in producing fine-scale mixing at  the scale of mobility variations motivates the 
analysis described in this paper. 

Considerable attention has been given to an instability process which can result 
from injection ofa  unipolar ion flux into an insulating region with imposed potential 
difference between electrodes (Schneider & Watson 1970 ; Watson, Schneider & Till 
1970; Atten & Moreau 1970; Hopfinger & Grosse 1971 ; Atten & Lacroix 1978). Like 
the mechanism described above, this process involves the accumulation of space 
charge in a spatially varying electric field, and consequent instability dynamics. 
Unlike the mobility-gradient-driven mechanism, this process can occur in a region 
of uniform mobility, provided the applied potential difference exceeds a threshold 
value. It is not associated with the scale of a property gradient. This kind of 
instability will be referred to below as 'classical ' space-charge EHD instability. As 
described explicitly in $5 ,  different dimensionless groups govern instability growth 
through classical and mobility-gradient-driven mechanisms. A part of the purpose 
of this paper is an unravelling of these distinct mechanisms as ameans of understanding 
their relative importances and effects. 

A relatively recent investigation has produced a description of incipience of a 
stationary EHD instability driven by a temperature-induced mobility variation with 
unipolar injection (Worraker & Richardson 1979). Because that analysis refers 
specifically to a dielectric liquid, mechanical properties, including viscosity, are taken 
as constant. In this paper, where the interest is in augmentation of heat transfer in 
a gaseous medium, a temperature-induced mobility gradient involves simultaneous 
viscosity and density gradients. It is shown here that the instability is stationary or 
dynamic for wavenumbers respectively below or above a critical value. The nature 
of instability growth and structure is documented as a function of relevant time- 
constant parameters and for currents less than the space-charge-limited value. 

2. Equilibrium structure 
The model shown in figure 1 involves a planar region of gas which is electrically 

highly insulating. Electrical conduction through the region comes about due to 
injection ofa unipolar charge species at the lower boundary and application of a high 
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potential difference between upper and lower boundaries. In order to isolate the 
fundamental physical mechanism of interest, the geometry is purely one-dimensional- 
equilibrium physical variables are functions only of the vertical (2) dimension. 

The layer has uniform permittivity e and vertically varying equilibrium mobility 
bE(Z). A vertical current density Joi ,  is injected a t  the lower boundary (x = 0) ,  
leading to equilibrium electric field EE(x) i ,  and charge density p E ( x ) .  The equi- 
librium structure is determined by steady-state conservation of charge, which 
requires pE(x) bE(x)  EE(x) = J,, a constant, and by Gauss’ Law, which requires 

If the imposed potential difference across the lager of thickness d is V ,  normalized 
E dEE(%)/dx = P E ( ~ ) .  

b E ( 4  
b0 

variables are defined by 
b E ( 5 )  = - , 

where 

X x = -  - 
d ’  

Jo d3 J -- 
- ebo V 2  ’ 

(4) 

(5) 

The imposed potential difference determines the electric field at 3 = 0, Eo = E E ( 0 ) ,  
for a specified injected current density and mobility variation 

1 = c (E:+2Joy) id~ ,  (7) 

where Jo must be less than a space-charge-limited value 

The equilibrium electric field and charge distributions, then, are 

EE = (ZE + 2Jo y)+, (9) 

J0 - 
b E  

= - (Ei+2Jo q-4. (10) 

If the model shown in figure 1 refers specifically to a static equilibrium where the 
upper electrode is hot, the temperature increases linearly with x. In  terms of a 
normalized temperature p(Z), defined such that T(0) 5 1 and T(1) = z, then, 

r=  l + ( g - l ) Z .  (11) 

Following Worraker & Richardson (1979) a simple linear dependence of mobility 
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FIQURE 2. Equilibrium electric-field and charge-density structures for injected currents less than 
the space-charge-limited value in a linearly varyingtemperature and hence mobility distribution. 
The upper plate is at normalized temperature TI = 1.75. BE(@ and pE(Z) are reduced from 
constant-mobility values to an increasing degree as mobility increases. (a) Equilibrium electric field 
EE(%). (b) Equilibrium charge density pE(Z). 

on temperature is taken to represent the first-order term of a more complex 
dependence. The dependence of normalized mobility on position, then, is 

b E ( Z )  = l + K ( % - l ) Z ,  (12) 

where, for air with the lower electrode at  293 K, K = 1.36 (Cobine 1958). The 
corresponding p(Z), from (6), is 

Figure 2 shows EE(z) and PE(Z) for the linearly varying mobility distribution with 
= 1.75. For this case, the space-charge-limited current is Jsc .  = 1.4292, as 

compared with a value of JScL = 1.1250 in the constant-mobility (T' = 1.00) case. 
The obvious effect of the mobility gradient is to reduce equilibrium electric field and 
charge density from their constant mobility distributions to an increasing degree with 
increasing I ,  and to permit higher injected current densities. 

The equilibrium mechanical properties of the layer are viscosity qE(x) and density 
pR(z). Each is normalized to its value at II: = 0:  
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where 7,, = ~ ~ ( 0 )  and po  = pR(0) .  
The variation of viscosity with temperature is represented, in a manner analogous 

to that used for mobility, with a simple linear dependence. The dependence of 
normalized viscosity on position, then, takes the form 

I jE (D)  = l+A(T, - l )D,  (16) 

where, for air with the lower electrode at 293 K, A = 0.60 (Weast 1970). 

hence the dependence of normalized density on position is given by 
Finally, density varies inversely with absolute temperature (Weast 1970), and 

3. Perturbation dynamics 
The following laws govern relationships among the physical variables of concern 

in the model represented by figure 1. With fluid mass density pm, viscosity 7, velocity 
components, v,, stress-tensor components S,, electric charge density p f ,  electric field 
components E,, and pressure p ,  taking an acoustic wavelength to be long enough for 
times of interest to model the fluid as incompressible, the Navier-Stokes equations 
are 

Provided that fluid viscosity 7, density pm, and mobility b diffuse slowly compared 
with times characterizing instability dynamics, the convective derivative of each 
quantity vanishes : 

(21) 
a7 - +V'V?j = 0, 
at 

aPm - at + v*vpm = 0,  

ab - + v.Vb = 0. 
at 

The electroquasistatic electric field is curl-free, and has the charge density as a source 

(24) 
in Gauss' Law : 

V x E = O ,  

V * e E  = p f .  (25 ) 

Finally, conservation of charge, with current density given by p,(bE+ v ) ,  yields 

aPf 
at V . ( p ,  [bE+ v ] )  + - = 0. 
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The stability of the electromechanical system is determined mathematically by 
expressing each physical quantity as the sum of equilibrium and perturbation parts, 
where perturbation variablesare taken to have time and horizontal spatialdependences 
of the form c* e(st-ikz), where c* is a complex amplitude. The objective of a stability 
analysis, then, is the determination of the dispersion relation between complex growth 
rate s and spatial wavenumber k .  Substitution of the physical variable forms into 
(18)-(26) and assumption of perturbation magnitudes small enough to justify 
linearization yields a system of 12 equations in the 12 unknown perturbation 
magnitudes. Algebraic elimination of T * ,  p t ,  b*, p*, and S,*, then leaves a system of 
7 equations in 7 unknowns. 

The system may be written in terms of governing time constants and normalized 
variables defined as follows : 

Po d 2  d 2  
7 M  = - T O  d 2  

€V2 ' T O  
7 3  =- 

d2 
P: = 

- 

(32) 
- d  

dx 
k = k d ,  S = 8 7 E ,  D = d - - .  

The seven coupled linear, first-order, non-constant-coefficient differential equations 
relating normalized perturbation amplitudes are then 

For the configuration of figure 1 ,  if superscripts u and /3 are associated with the 
upper and injection electrodes respectively, then the boundary conditions on 
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FIGURE 3. Two fastest-growing eigenfrequencies as functions of wavenumber with = 1.75, 
J ,  = 1.0, T ~ / T ~  = 1 .O, and T J T ~  = 0. The fastest-growing eigenfrequency reaches amaximum value 
8* at wavenumber k*. The two roots merge at a higher value of k, then become a complex-conjugate 
pair, corresponding to propagation at short wavelengths. Real and imaginary parts are denoted 
by solid and dashed lines, respectively. 

perturbation velocity and electric field components are : 
- - 

(40) [up = = E * U  = vx -*b = vzP= -* E,*B=O. 

The seventh boundary condition derives from the nature of current injection at the 
lower electrode. For an injected current density less than the space-charge-limited 
value, the injected charge density is taken as independent of perturbation dynamics, 
and thus 

(This boundary condition, through B,*b = 0 and (36), is equivalent to DEzP = 0, as 
used by Atten & Moreau (1976) for ‘autonomous injection’.) 

Determination of eigenfrequencies s for specified wavenumbers E, time-constant 
ratios T ~ / T ~  and 7 J r E ,  and equilibrium variable distributions involves a technique 
which has been successfully applied in the context of similarly modelled systems 
(Hoburg & Melcher 1976; Hoburg 1978). A Runga-Kutta integration procedure is 
used to determine the components of the 7 x 3 matrix, L ,  defined by: 

p y  = 0. (41) 

(42 1 *a -*or E*u g * u  g*u g*u -*a T = L[E;a, flz!, flzl]T. [% 3 2 1 ,  2 2 5 1 Z Z ’  X Z ? P f  1 
(The first three boundary conditions in (40) and (41) have been incorporated here.) 
Among the entries in L are the components of the 3 x 3 matrix T,  defined by 

[ u : ~ ,  qzu, E?IT = T[E,*P, fl;!, R39T. (43) 

(44 ) 

Thus the dispersion relation necessary to satisfy the last three boundary conditions 

det T = 0. in (40) is 

An iterative search procedure in the complex s-plane is used to find the eigenfrequency 
solutions (Hoburg 1978). 
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FIGURE 4. Perturbation variables as functions of position at the fastest-growing eigenfrequeccy of 
figure 3. ( a )  Perturbation vertical velocity, n:. ( b )  Perturbation horizontal electric field, E,*. (c) 
Perturbation charge density, pp*. 
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FIGURE 5 .  Cellular fluid streamlines for stationary and propagating eigenfrequencies. The transition 
from real to complex roots corresponds to a change from stationary vertical cells to propagating 
slanted cells. (a )  Stationary- streamlines a t  the fastest-growing eigenfrequency of figure 3. ( b )  
Propagating streamlines at k = LO in figure 3. 
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FIGURE 6. Fastest-growing wavenumber k* and growth rate S* as functions of-injected current 
density J, with 0. k* is_nearly constant for J ,  much less than 
the space-chgge-limited value, then decreases as J ,  nears J,,,. 8* has a maximum at a value of 
J, less than J,,,, indicating most-rapid growth a t  sub-space-charge-limited conditions. 

= 1.75, rM / r E  = 1 .O, and rJrE 

4. Results 
Figure 3 shows the behaviour of the two fastest-growing eigenfrequencies as 

functions of wavenumber l. The dependence is similar to that found in a model for 
EHD instability in a region with a collinear applied field and conductivity gradient 
(Hoburg 1978). Both eigenfrequencies are positive and pure real, starting at  the origin 
and increasing with increasing 6. The fastest growing eigenfrequency reaches a 
maximum value, termed S*, a t  = k*, then decreases to meet the still-rising second 
eigenfrequency. Here, the two zeros of det T merge on the real S-axis, and with further 
increases in k: become a conjugate pair in the complex S-plane. Thus, the instability, 
which is stationary for long wavelengths, becomes oscillatory for short wavelengths. 
(Real and imaginary parts of the complex eigenfrequencies are represented by solid 
and dashed lines respectively in figure 3.) 

The nature of the instability described by the eigenfrequency solutions represented 
in figure 3 is clarified by the corresponding eigenfunction distributions. A t  a value 
of s where (44) is satisfied, linear combinations of the elements of T yield values of 
szi and gzg corresponding to an arbitrarily set E,*a = 1 + i0. Numerical integration 
of the governing equations (33)-( 39) across the layer then determines the distributions 
of the perturbation variables, and vanishing values of V z ,  flz and E$ at z = 1 confirm 
the eigenfrequency solution. Figure 4 shows the perturbation variables o,*, Ez and 
p: as functions of position across the layer at the fastest-growing eigenfrequency in 
figure 3. Less rapidly growing eigenfrequencies at  the same wavenumber correspond 
to more variations of the eigenfunctions across the layer. 

In figure 5 ,  fluid streamlines are plotted corresponding to the fastest-growing 
eigenfrequency and corresponding to a complex eigenfrequency at a relatively high 
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@XTRE 7. Fastest-growing wavenumber k;‘ and growth rate B* as functions of rM,/rE with = 1.75, 
J ,  = 1.0, and 71/7E = 0.0. For less than about 100, fluid viscosity dominates over inertia, 
and k* and 8* are independent of rM/ rE .  For high values of rM/7E, fluid inertia lowers $* and 
increases P .  

value of the wavenumber. The cellular instability corresponding to pure real growth 
is analogous to  that for which marginal stability conditions have been developed by 
Worraker & Richardson. At the high wavenumber, ‘ overstability ’, involving both 
growth and propagation, produces a series of slanted cells, with an associated physical 
mechanism similar to that encountered in ohmic liquid EHD instability analyses 
(Hoburg & Melcher 1976; Hoburg 1978). Cellular fluid motions lead to perturbation 
charge accumulation responsible for the propagation. The complex-conjugate eigen- 
frequency corresponds to a streamline slant which is mirrored through the vertical, 
and propagation in the opposite direction. 

The dependence of fastest-growing eigenfrequency S* and corresponding wave- 
number k* upon injected current density and time-constant ratios is represented in 
figures 6-9. In  figure 6, k* and S* are shown as functions of injected current density, 
J,, for values increasing from zero to the space-charge-limited value. The wavenumber 
for most-rapid growth is nearly independent of injected current until J,  nears JscL; 
k* then decreases, corresponding to a longer instability wavelength, as J, increases 
to JScL. The corresponding most-rapid growth rate increases with increasing injected 
current, but reaches a maximum a t  a value of J, less than JscL. This is an important 
and somewhat unexpected result - instability growth is maximized by using an 
injected current less than the space-charge-limited value. 

Figure 7 shows the dependences of k* and S* upon TM/TE,  which is a measure of 
the relative importances of fluid inertia and viscosity. For values of rM/rE less than 
about 100, fluid motions are viscous-dominated, and k* and S* are independent of 
?M/?E. At high values of ? M / 7 3 ,  fluid inertia becomes significant, lowering the 
most-rapid growth rate and increasing the corresponding wavenumber. 

the ‘electric Rayleigh 
number ’ parameter associated with instability incipience in the classical space charge 
instability process with no mobility gradient, and upon z, the normalized upper 
electrode temperature. In figure 8, S* is plotted versus r I / r3  for five values of 
temperature gradient. The dependence here deserves emphasis, since it clarifies the 
nature of the two kinds of instability mechanism which are interwoven. Analysis of 

Figures 8 and 9 show the dependence of s* upon 
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FIGURE 8. Growth rate S* versus 71/73 at various temperature gradients with J,, = 1.0 and 
TM/T3 = 1.0. For values of 71/73 much less than 100, where the classical space-charge instability 
is below incipience, the mobility-gradient-driven mechanism leads to instability. For 7 , / ~ ~  much 
greater than 100, the claasical mechanism’dominates. 
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FIGURE 9. Growth rate B* versus 1.0 and 7&E = 1.0 For 
low values of B* increases rapidly with increasing Tl a t  small Tl owing to the increasing 
mobility gradient. At large Tl, 6* decreases slowly with Tl owing to increasing fluid viscosity. For 
high values of 7 1 / ~ E ,  B* decreases with increasing Tl. 

at various values of 7 1 / ~ E  with J,, 
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the classical space-charge instability with no mobility gradient (Schneider & Watson 
1970) leads to incipience a t  71/73 = 99. Here, even with 71/73 = 0, the mobility- 
gradient-driven mechanism leads to instability. For values of 71/73 much less than 
the classical incipience value, instability growth rate is independent of 71/73. When 
71/73 becomes of order 100, S* increases rapidly with 71/73. The fact that the curves 
cross one another reflects the effect of the viscosity gradient upon growth rate in the 
 high-^^/^^ regime. Here, the classical space-charge instability dominates, and the 
effect of the mobility gradient is secondary. The simultaneous presence of both 
mechanisms leads to a smooth transition in growth rate from one regime to the other. 
The curve for = 4 makes it clear that a large temperature gradient can produce 
instability growth at 71/73 = 0 very nearly as rapid as that  occurring at 71/73 much 
higher than the classical incipience value. 

for various Values of 71/73. For low values of 
71/73, where the classical space-charge instability is below incipience, growth rate 
increases rapidly with increasing temperature gradient for relatively small TI, where 
the effect of increasing mobility gradicnt is dominant. For relatively large c, the 
corresponding increase in gas viscosity limits instability growth rate, so that S* 
decreases slowly with increasing q. For values of 71/73 well above the classical 
incipience, increased viscosity produces a fairly rapid falloff of growth rate with 
increasing temperature. 

I n  figure 9, S* is plotted versus 

5. Discussion 
The model described in the preceding sections involving a mobility gradient in a 

gas adjacent to a heated surface with associated alterations of charge-density and 
electric-field distributions, identifies the role of EHD instability in augmenting heat 
transfer by driving fluid motions at the scale of the mobility variation. The 
relationship of the mobility-gradient-driven mechanism to the classical space-charge 
instability is directly linked to the three time constants defined by (27). 

73 is the so-called ‘electroviscous’ time associated with fluid motions driven by an 
electric stress and retarded by viscosity, while T~ is a ‘viscous-diffusion’ time 
associated with the motion of mechanical disturbances through the fluid. The ratio 
7 M / T E  is familiar from studies of EHD instability in ohmic fluids. For example, if 
an electric field is applied normal to the initially flat interface between ohmic fluids 
of differing conductivities, perturbations of interfacial displacement grow at rates 
determined by 71\1/73. This ratio measures the relative importance of fluid inertia and 
viscosity in limiting motions driven by charge accumulation in an applied electric 
field. 

71 represents the time required for an ion with mobility b, to move across the 
distance d in a uniform electric field V / d .  The ‘electric Rayleigh number’ T ~ / T ~  

(Schneider & Watson 1970) defines incipient instability for injection of an ion flux 
into a constant-mobility fluid. This mechanism hinges on a ‘ charge-relaxation ’ 
process - a delay in the buildup of charge, as driven by redistributions corresponding 
to fluid motions, is essential to  the instability. 

Equation (26) is particularly instructive in distinguishing the two instability 
mechanisms. The charge-relaxation process is described by an interaction between 
p,bV*E and the convective time derivative of pf. By contrast, when the mobility b is 
spatially varying, a term of the form p f E . V b  leads to an alteration in charge 
accumulation a t  the scale of the mobility gradient. 

The classical space-charge instability with constant mobility requires an applied 
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voltage high enough for T ~ / T ~  = 99. On the other hand, the mobility-gradient-driven 
instability occurs even in the instantaneous relaxation limit, where T J T ~  = 0, and 
hence can occur at values of voltage much lower than necessary for incipience of the 
classical kind. 

The Worraker & Richardson analysis of a mobility-gradient-driven instability in 
a liquid with no viscosity and density variation is specifically oriented to incipience 
of a stationary instability, and hence is based upon marginal-stability equations 
( S  = 0). Here, instability growth rate is documented as a function of wavenumber and 
time-constant ratios for a model appropriate to ion injection towards a heated plate 
in a gas, where viscosity and mobility increase while density decreases with position 
away from the injection electrode. The pure real growth at low wavenumbers and 
complex growth a t  high wavenumbers clarifies the nature of the ‘exchange-of- 
stabilities’ assumptions (i.e. that i? is pure real when instability first occurs) of 
Schneider & Watson and Worraker & Richardson. 

While the analysis of Worraker & Richardson identifies four combinations of 
temperature of the emitting electrode relative to the collector and gravitational 
orientation, the work described here is limited to injection through a positive mobility 
gradient, corresponding to the motivating heat transfer augmentation application. 
Extension of the present model to space-charge-limited conditions through a 
transformation of the governing equations forms the basis of ongoing investigations. 

Some typical numerical values help to further clarify the roles of the instability 
processes. For ions in air, take b, = 2 x kg/m s, and 
po = 1 kg/m3. Then incipience of the classical space-charge instability requires 

m2/V s, qo = 2 x 

- . -  
or V x 50000 V. 

On the other hand, even with the voltage reduced by a factor of 100, at V x 500 V, 

_ -  -- 7M x 5000, 
r E  * 7; 

and, for a lengthscale d % m, T~ = po d 2 / q ,  x 5 s. Thus, at a voltage 100 times too 
low to lead to classical space-charge instability, an instability associated with and 
at the scale of the thermally created mobility gradient drives fluid motions in which 
inertia is beginning to compete with viscosity in limiting growth. 

The issues described here have been sources of considerable confusion in attempts 
to model observed instances of electrical augmentation of heat transfer. The relevant 
literature contains analyses based upon the classical injection-space charge instability 
in situations where the mobility-gradient-driven mechanism should be expected to 
dominate (Velkoff 1962 ; Franke 1969) and explanations based upon effects, e.g. 
non-uniform polarization of gas molecules (Arajs & Legvold 1958; Lykondis & Yu 
1963) whose magnitude cannot be large enough to yield force densities corresponding 
to observation. 

This work was supported by National Science Foundation Grant MEA-8118449. 
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